Phosphorus Recovery from Sewage

6

6th Organic Producers Conference, Birmingham, January 2012

Pete Vale, Severn Trent Water,

Contents

- Background
 - Sewage a valuable resource
 - The Global P issue
 - UK P flow analysis and the contribution from sewage treatment
- Phosphorus Recovery
 - How to recover more P?
 - In what form?

Commercially available technologies

STW's current biosolids operation

- STW is the UK's 2nd largest water utility serving 8 million customers
- The sewage treatment process generates ~240,000 tds/annum of biosolids
- 100% of the biosolids anaerobically digested
 - at 40 digestion sites
 - ~165,000 tds/annum of treated digested 'sludge cake' produced
 - all of this sludge is used as an agricultural fertiliser
- 56 CHP engines (at 35 sites) convert the biogas to renewable electricity and heat
 - Producing ~ 175 GWh/annum of electricity (equating to ~ 22% of our total energy needs)
 - The heat is recycled to the anaerobic digesters

Future developments

- Sewage already viewed as a resource, and not a waste
- but, additional value remains to be utilised

Global Demand for Phosphorus

- "Phosphorus is as critical for all modern economies as water"
- "without phosphorus we cannot produce food. At current rates, reserves will be depleted in the next 50 to 100 years"
- "Peak phosphorus, say scientists, could hit the world in just 30 years"
- "In the past 14 months, the price of the raw material - phosphate rock - has surged by more than 700 per cent to more than £185 per tonne" ("The Times", June 23 2008)

Phosphorus production: When will it peak?

The UK's (simplified)phosphorus life cycle (2009 data)

The role of the Water Industry in recycling P

DATA COURTESY OF UKWIR / BIRMINGHAM UNIVERSITY

How to recover more P

What is Struvite?

 $Mg^{2+} + NH_4^+ + PO_4^{3-}$ $MgNH_4PO_4 \cdot 6H_2O$ Naturally occurring But, also a valuable Exists in most wastewater plants slow release fertiliser (forms easily!) Increases O & M costs Impacts plant reliability Waste Water Services or othes film

Commercially available technologies

1) Ostara's Pearl[®] Process

SCHEMATIC COURTESY OF OSTARA NUTRIENT RECOVERY TECHNOLOGIES INC

The Ostara Pilot Plant at Derby STW

Full Scale Ostara Plant at Durham AWWTP, US

PHOTOGRAPH COURTESY OF OSTARA NUTRIENT RECOVERY TECHNOLOGIES INC

The Ostara Struvite Product (Crystal Green®)

- Ready to use after drying
- No post processing already in pelletized (prill) form
- Fully registered fertiliser classified as a product in >20 US states, Canada & UK
- Trials undertaken
 - Turf, Nursery, and Specialty Agriculture
- Sustainable product
 - Low CO₂ emissions, renewable, reduced run-off & reusable locally

PHOTOGRAPHS COURTESY OF OSTARA NUTRIENT RECOVERY TECHNOLOGIES INC

Commercially Available Technologies

Conclusions

- Treated sewage sludge already a significant and valuable P fertiliser.
- Recovery of P through struvite would allow up to 40% more P to be recycled.
- Application as struvite rather than treated sludge can be more targeted and allows more applications.
- Technology and product now commercially available.
- Severn Trent Water likely to have a full scale plant built and operating within a couple of years.

